201 research outputs found

    Quantum Algorithm to Solve Satisfiability Problems

    Full text link
    A new quantum algorithm is proposed to solve Satisfiability(SAT) problems by taking advantage of non-unitary transformation in ground state quantum computer. The energy gap scale of the ground state quantum computer is analyzed for 3-bit Exact Cover problems. The time cost of this algorithm on general SAT problems is discussed.Comment: 5 pages, 3 figure

    NP-hardness of the cluster minimization problem revisited

    Full text link
    The computational complexity of the "cluster minimization problem" is revisited [L. T. Wille and J. Vennik, J. Phys. A 18, L419 (1985)]. It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analog of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.Comment: 8 pages, 2 figures, accepted to J. Phys. A: Math. and Ge

    Travelling Salesman Problem with a Center

    Full text link
    We study a travelling salesman problem where the path is optimized with a cost function that includes its length LL as well as a certain measure CC of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behaviour of LL and CC, in efficiency of SA, and in the shape of minimal paths.Comment: 4 pages, minor changes, accepted in Phys.Rev.

    Optimal combinations of imperfect objects

    Full text link
    We address the question of how to make best use of imperfect objects, such as defective analog and digital components. We show that perfect, or near-perfect, devices can be constructed by taking combinations of such defects. Any remaining objects can be recycled efficiently. In addition to its practical applications, our `defect combination problem' provides a novel generalization of classical optimization problems.Comment: 4 pages, 3 figures, minor change

    Extremal Optimization at the Phase Transition of the 3-Coloring Problem

    Full text link
    We investigate the phase transition of the 3-coloring problem on random graphs, using the extremal optimization heuristic. 3-coloring is among the hardest combinatorial optimization problems and is closely related to a 3-state anti-ferromagnetic Potts model. Like many other such optimization problems, it has been shown to exhibit a phase transition in its ground state behavior under variation of a system parameter: the graph's mean vertex degree. This phase transition is often associated with the instances of highest complexity. We use extremal optimization to measure the ground state cost and the ``backbone'', an order parameter related to ground state overlap, averaged over a large number of instances near the transition for random graphs of size nn up to 512. For graphs up to this size, benchmarks show that extremal optimization reaches ground states and explores a sufficient number of them to give the correct backbone value after about O(n3.5)O(n^{3.5}) update steps. Finite size scaling gives a critical mean degree value αc=4.703(28)\alpha_{\rm c}=4.703(28). Furthermore, the exploration of the degenerate ground states indicates that the backbone order parameter, measuring the constrainedness of the problem, exhibits a first-order phase transition.Comment: RevTex4, 8 pages, 4 postscript figures, related information available at http://www.physics.emory.edu/faculty/boettcher

    Minimizing Unsatisfaction in Colourful Neighbourhoods

    Get PDF
    Colouring sparse graphs under various restrictions is a theoretical problem of significant practical relevance. Here we consider the problem of maximizing the number of different colours available at the nodes and their neighbourhoods, given a predetermined number of colours. In the analytical framework of a tree approximation, carried out at both zero and finite temperatures, solutions obtained by population dynamics give rise to estimates of the threshold connectivity for the incomplete to complete transition, which are consistent with those of existing algorithms. The nature of the transition as well as the validity of the tree approximation are investigated.Comment: 28 pages, 12 figures, substantially revised with additional explanatio

    Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing problem

    Get PDF
    We present a new approximation algorithm for the two-dimensional bin-packing problem. The algorithm is based on two one-dimensional bin-packing algorithms. Since the algorithm is of next-fit type it can also be used for those cases where the output is required to be on-line (e. g. if we open an new bin we have no possibility to pack elements into the earlier opened bins). We give a tight bound for its worst-case and show that this bound is a parameter of the maximal sizes of the items to be packed. Moreover, we also present a probabilistic analysis of this algorithm

    The Computational Complexity of the Lorentz Lattice Gas

    Full text link
    The Lorentz lattice gas is studied from the perspective of computational complexity theory. It is shown that using massive parallelism, particle trajectories can be simulated in a time that scales logarithmically in the length of the trajectory. This result characterizes the ``logical depth" of the Lorentz lattice gas and allows us to compare it to other models in statistical physics.Comment: 9 pages, LaTeX, to appear in J. Stat. Phy

    Instance Space of the Number Partitioning Problem

    Full text link
    Within the replica framework we study analytically the instance space of the number partitioning problem. This classic integer programming problem consists of partitioning a sequence of N positive real numbers \{a_1, a_2,..., a_N} (the instance) into two sets such that the absolute value of the difference of the sums of aja_j over the two sets is minimized. We show that there is an upper bound αcN\alpha_c N to the number of perfect partitions (i.e. partitions for which that difference is zero) and characterize the statistical properties of the instances for which those partitions exist. In particular, in the case that the two sets have the same cardinality (balanced partitions) we find αc=1/2\alpha_c=1/2. Moreover, we show that the disordered model resulting from hte instance space approach can be viewed as a model of replicators where the random interactions are given by the Hebb rule.Comment: 7 page

    Extremal Optimization of Graph Partitioning at the Percolation Threshold

    Full text link
    The benefits of a recently proposed method to approximate hard optimization problems are demonstrated on the graph partitioning problem. The performance of this new method, called Extremal Optimization, is compared to Simulated Annealing in extensive numerical simulations. While generally a complex (NP-hard) problem, the optimization of the graph partitions is particularly difficult for sparse graphs with average connectivities near the percolation threshold. At this threshold, the relative error of Simulated Annealing for large graphs is found to diverge relative to Extremal Optimization at equalized runtime. On the other hand, Extremal Optimization, based on the extremal dynamics of self-organized critical systems, reproduces known results about optimal partitions at this critical point quite well.Comment: 7 pages, RevTex, 9 ps-figures included, as to appear in Journal of Physics
    • …
    corecore